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A8STRACT

Consider solutions (H(x,C),G(x,c)) of the von K rmgn equations for the

swirling flow between two rotating coaxial disks

iv1.1) CH + HH" + GG' =0,

1.2) CG" + HG' - H'G = 0

In this survey we describe much of the activity of the past 30 years -

involving physical conjecture, numerical computation, asymptotic expansions

and rigorous mathematical results. In particular we focus on the questions of

existence and nonuniqueness, monotonicity, and "scaling".

AMS (MOS) Subject Classifications: 34B15, 34E15, 35QI0

Key Words: Ordinary Differential Equations, Rotating Fluids, Similarity
Solutions, Asymptotic behavior, Existence, Nonuniqueness, Scaling,
Computation, Matched Asymptotic Expansions

Work Unit Number I (Applied Analysis)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and
by the Office of Naval Research under Contract No. N00014-76-C-0341, ID numb.r
NR 044-35b.



SIGNIFICANCE AND EXPLANATION

Under appropriate conditions the steady-state flow of fluid between two planes

rotating about a common axis perpendicular to them may be described by two functions

H(x,e), G(x,e) which satisfy the coupled system of ordinary differential equations

CH + HH"' + GG' = 0

9G" + HG' - H'G = 0
1

The quantity C > 0 is related to the kinematic viscosity and - = R is usually
e

called the Reynolds number.

These equations have received quite a bit of attention. First of all, people

who are truly interested in the phenomena modeled by these equations, e.g. fluid

dynamicists, are interested in this problem. However, as these equations have been

studied by a variety of mathematical methods, they have taken on an independent

interest. The major methods employed have been (i) Matched Asymptotic Expansions

and (ii) Numerical Computations. In both approaches technical problems have

appeared. There may be "turning points," i.e. points at which H(x,E) = 0. Such

points require special and delicate analysis within the theory of (i). As numerical

problems, these equations are "stiff" - precisely because e is small. The

occurrence of "turning points" only makes computation more difficult.

For these reasons, these equations have become "test" problems for methods of

"matching in the presence of turning points" and "stiff O.D.E. solvers." However,

when one has "test problems," one needs to know the answers. Unfortunately here the

answers are largely unknown.

In the 60 years since the basic von Kgrman paper (1921) and the 30 years since

the famous papers of Batchelor (1951) and Stewartson (1953) there has been an

intensive interaction between physically based conjecture, numerical calculations,

formal asymptotic expansions and rigorous mathematical results. In this survey we

discuss several specific questions and describe this interaction.

This article is an expansion of a talk given in Oberwolfach, Germany at the

Conference on Singular Perturbations.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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1. Introduction 4PCE

In 1921 T. von Khrmn [121 developed the simil.rity equations for axi-symmetric,

incompressible, steady flow - "swirling flow". Let (qr,qeqx) be the coordinates of

velocity in cylindrical coordinates, (r,e,x). von Kgrmin assumed that there is a function

H(x,c) such that

qx = -H(x,E)

Then (see (2), [12]) there is a function G(x,C) so that the velocity components are

described by

qr H ' H(x, C), q8 G(x,¢)•
2 2

The functions (H(X,E),G(x,E)) satisfy the equations

(1.1) C; i v 
+ HH''' + GG' = 0

(1.2) EG" + HG' - H'G = 0

The quantity C > 0 is related to the bulk viscosity. Equation (1.1) can be integrated to

yield

(1.3) CH''' + HH" + 1 G2  1(H) 2

2 2

where p is a constant of integration.

In the case originally studied by von Kfrmin, the flow above a single disk, we have a

problem on the infinite interval [0, ] and the constant of integration is known, i.e.,

where 1 - G( ,E). Moreover, in this case the parameter c may be "scaled out". Assume

a0 * 0 and let

(1.4a) x/vc

(1.4b) H(X,E) = v'E h(&), G(x,c) - g(E)G(O,C)

Sponsored by the United States Army under Contrict No. DAAG29-80-C-0041, and by the Office
of Naval Research under Contract No. NU0014-76-C-0341, ID number NR 044-356.



Then, the functions ( h(C),g(t)) satisfy

1 2 1 * 2 
1  . 01

2

(1.s} '" + h" + g 19 (h') 2 n

(1.6) g" hg' - h'g = 0

and the boundary conditions

(1.7a) h(0) = 0, (no penetration)

(1.7h) hf(0) - 0, (no slip)

(1.7c) g(O) - 1, normalization

(1.7d) h(M) bounded as t 
+ 

-

(1.7e) g(l) + -/Q0 a C a +

If w. consider the flow between two planes, x = O, x 1 rotating with constant

angular velocities Q0/2, a1/2, then the quantity P - P(W) is unknown. This latter case

was first studied by Bacchelor [21 and Stewartson [38] who gave conflicting arguments and

conjectures. In this case the boundary conditions are

(1.8a) H(O,C) - H(1,E) = 0, [no penetration]

(1.8b) H'(0,r) - H'(1,E) = 0, [no slip]

(1.8c) G(O.E) - no , G(1,6) - Q1 , If0I + I', 0

Both of these problems have been the subject of many numerical studies and have been

attacked by formal matched asymptotic expansions. The von Kgrm~n problem was studied

numerically by D. N. Hannah [8] in 1947 and by M. H. Rogers and G. N. Lance (351 in 1962

and more recently by D. Dijkstra and P. J. Zandberger [5] in 1977 and M. Lentini and H. B.

Keller in 1980 [211. These recent calculations are concerned with "tracing'out" the

branches of the solution set. In particular, these calculations strongly imply the non-

unicity of the solution. Formal works on the von KrmAn problem have been carried out by

M. G. Rogers and G. N. Lance [351, W. G. Cochran [4], H. Ockenden [28] and H. K. Kuiken

[191. Rigorous results on the existence and uniqueness question are not complete. J. B.

McLeod (221 has shown existence of a solution for all non-negative values of Q.. In

addition, he has shown non-exiqtence for f = -1.

For the two disk problem numerical calculations have been carried out by C. E. Pearson

130]; Lance and Rogers [20]; 1). Greenspan 17], D. Schultz and D. Greenspan [361; G. L.
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Mellor, P. J. Chapple and V. K. Stokes [26], N. D. Nguyen, J. P. Ribault and P. Florent

[27]; S. M. Roberts and J. S. Shipman [341; H. B. Keller and R. K-H. Szeto 1131; L. 0.

Wilson and N. L. Schryer [421; G. H. Hoffman [10]; H. J. Peach and P. Rentrop [31]; M.

Kubicek, M. Holodniok, V. HlavgEek [11]; [171, [181. Formal matched asymptotic expansion

methods have been used by A. Watts [401 (who also did numerical calculations), K. K. Tam

[391, H. Rasmussen [33], B. J. Matkowsky and W. L. Siegmann [25]. Undoubtably many others

have also worked on this problem.

As in the case of the single-disk problem, the rigorous mathematical results for the

two disk problem are incomplete. The basic questions of "existence" and "uniqueness" have

remained unanswered. S. P. Hastings [91 and A. R. Elcrat (6] have proven existence and

uniqueness for large C. Their arguments are essentially a perturbation about 9 = -. -J.

B. McLeod and S. V. Parter [23] considered the special case where 00 . -0 * 0. They have

shown the existence of a solution for all E > 0 and; for these solutions, they gave a

complete discussion of the asymptotic behavior. More recently H. 0. Kreiss and S. V.

Parter [161 have proven the existence of many "large amplitude" solutions.

Through these 60 years since the basic von Krm~n paper and the 30 years since the

Batchelor paper the interaction between physically based conjecture, numerical

calculations, formal asymptotic expansions and rigorous mathematical results has been

intensive. In the remainder of this paper we will discuss several specific questions and

describe this interaction. Of course, the view we present is one which is influenced by

our own work and interests.

In Section 2 we discuss the counter-rotating case: Q0 = -01 * 0. In Section 3 we

discuss the monotone co-rotating case: 0 < Q0 4 1II G'(x,t) > 0. Section 4 describes

the results for the case where the "basic" scaling applies

(1.9) H(x,e) = o(,r), G(x,C) = 0(1)

Section 5 discusses the case of *order I" solutions. In Section 6 we turn to the question

of "cells". Section 7 describes the existence theory for "large amplitude* solutions.

Finally in Section 8 we discuss some more unarkswered questions.

-3-



2. Counter-Rotating Disks

In his 1951 paper [2) G. K. Batchelor gave special attention to the case

(2.1) G(0,E) a -1, G(1,e) - 1

He suggests that one of the possible solutions the main body of the fluid would be in two

parts with different angular velocities - see Figure I which is reproduced from (21. In

1952 K. Stewartson discussed this problem and, using a power series in the Reynolds number

R 1/i

and obtained a solution in which the core has (essentially) zero angular velocity.

g... u . .4 decC u

'mebution o a ulaw veloe*A betvmen Lhe dies.

Figure 1

In 1965 C. Pearson [30] computed (numerically) solutions of the steady state problem

as the (t + ) limit of a transient problem. His results were startling in that his

solutions were not "odd" about x - 1/2. That is

H(x,C) * -H(I - x,e), G[X,E) * -GOI - xC)

Thus, as Serrin (37] observed, Pearson's results implied non-uniqueness. Moreover, the

Pearson solution had none of the characteristics suggested by either Batchelor or

Stewartson (see Figure 2 - taken from Pearson [30]).

In 1974 G. H. Hoffman (101 studied this problem (among others) using a method of

computer extension of the Stewartson pertirbation series.

-4-
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0 02 410

Profiles of G,H,H 2 , for steady-state motion between two counter-rotating

disks with R = 1000.

Figure 2

Tam [391 (1969), Rasmussen [331 (1970), and Watts [40] (1974) applied matched

asymptotic expansions to this problem.

In 1974 J. 8. McLeod and S. V. Parter 1231 proved the existence of an "odd" solution

(odd about x = 1/2 ). moreover, they gave a complete asymptotic analysis (C + 0). In

particular, G(x,C) is monotone, i.e.

(2.2) G'(x,C) > 0, 0 < x < 1/2•

on the interval (1/2,1] H(x,C) is characterized by three points xl,x 2 ,x 3  and its

negativity. We have (see Figure 3)

(2.3) H(x,E) < 0, 1/2< x < 1

(2.4a) HI(x,E) < 0, 1/24 x < X1

(2.40) HI(X,E) > 0, x1 < x < 1

. .. . . . . . ... .. I .. . . . II . . .. |" - - . .. . . . " . . . .. - 1



(2.Sa) 0 < H"(x,¢), '/2< x <

(2.5b) H"(x,e) < 0, x2 < X < 1

(2.6a) 0 < HII'(x,e), 1/2( x < X3

(2. b) Ht''(x,E) < 0, x3 <x 1

Furthermore, in the core G(x,C) is exponentially small while in the boundary layers (at

x - 0 and x = 1) the solution (H(x,E),G(xC)) is asymptotically the solution of a

von K~rmin problem with (1 = 0. Finally, consistent with the remarks above, the solution

satisfies the basic scaling (1.9).

1

B H"
G

1 0 0

Figure 3

Thus, [23] yielded the existence, for all C > 0, of an odd Stewartson type

solution, Since there was no uniqueness theorem, these results did not exclude the

possibility of a Batchelor type solution or a Pearson type solution.

One result of [23] asserts that: If ( H(x,e),G(x,c) ) is a solution which is odd

about x = 1/2 then the condition (2.2) implies the conditions (2.3)-(2.7b) and vice-

versa. This result showed that the computational results of (7) were not a good

approximation to a solution and led to the improved numerical method described in [36). In

-6-



addition, the singular Batchelor solution is an odd solution. His picture seems to

indicate that G' > 0. If that was his intention, then this result eliminates the

possibility of such a singular solution. Indeed, since Batchelor expressed his equations

in such a way as to imply the basic scaling (1.9), the singular solution is ruled out by

the results of Section 4.

Since 1974 there has been further computational work e.g. (31] and matched asymptotic

expansion work, e.g. [251, on this problem.

Finally, the recent results of Kreiss and Parter 116] show that there are many "large

amplitude" solutions for C sufficiently small. It seems reasonable that the Pearson

solution is a "single hump" large amplitude solution. Watts 140] came to this conclusion

on the basis of his work in matched asymptotic expansions. We will have more to say about

this in Section 6.

-7-



3. Co-Rotating Disks

Let us first consider the case

(3.1) SlO . CI - 1 i.e., G(O,E) - G(1,C) 1 1

In this case one sees at least one solution at once

(3.2) H(x,C) = 0, G(x,E) R 1

It is not difficult to see that this solution is "stable", i.e. there is no local

bifurcation - see (31.

Let G(1,C) be fixed, i.e.

(3.3) G(1,E) = ,

and let

(3.4) G(0,E) = s

From the remark above, there is an interval s(E) < 9 < s2 () with 1 (E) < I <s2(C),

so that there is a solution of (1.1), (1.2), (1.8a), (1.8b), (3.3) and (3.4) for

s r (s1 (),s2 ()). This remark is the basis for a numerical method studied by M. Kubicek,

M. Holodniak and V. Hlavg6ek [18] and the work of J. Cerutti [3]. However, we have no

knowledge of the behavior of s I(C), a 2(C) as E * 0+.

The formal asymptotic work of Stewartson [38] and Watts [40] indicates that there may

be other solutions of this problem which also satisfy the basic scaling (1.9). Watts

suggests there is a solution very much like the solution obtained for the counter-rotating

case. In this case we expect

(3.5a) H(X,C) = -H(1 - x,E)

(3.5b) G(x,C) f G(I - x,E)

with G(x,C) exponentially small in the core and H(x,e) having a "shape" similar to tne

shape described by (2.3)-(2.6b). Some of our preliminary work indicates that such

solutions do indeed exist for C small enough. However, we conjecture that if such

solutions exist, then

(3.6) G(0,C) < 0

. . . . . .. . .

.. ...... . , . .. I .... . . . .. .. ....-8 -.



In the general co-rotating ctse

(3.7) 0 & G(O,E) < G(1, I)

Batchelor suggested that the angular velocity would be monotone, i.e.

(3.8) G'(x,C) > 0, 0 < x 4 1

In fact, this is false. McLeod and Parter (241 have shown:

1Let G(O,t), G(I,t) be fixed and satisfy (3.7). Then there is an C = t(0,.11 such that

if 0 < C < E and if there is a solution of (1.1), (1.2), (1.8a), (1.8b) and (7.8c), the

inequality (3.8) is false.

Once more, the results of Kreiss and Parter (161 show that for E small enough there

are (many) solutions to this problem.

-9-



4. The Basic Scaling

Many of the authors dealing with this problem have assumed the basic scaling (1.9);

(4.1) IH(x,E)l 4 /r B, IG(x,C)I 4 B

and employed the change of variables (1.4a), (1.4b). Thus, one has the equations (1.5),

(1.6) on the larger interval [0,1//i]. From the point-of-view of computation this leads

to regular problems - albeit on a large interval - which is desirable particularly when

employing the "shooting method" see [201, (261. From the intuitive point-of-view as well

as from the matched asymptotic viewpoint it is reasonable to assume that the solution in

the boundary layers - at both disks - behaves like a solution of the von Kgrm~n problem

which then "matches" with a core solution. In fact, this approach was used by Watts (40],

Tam (39] and Rasmussen [33] - and implicitly by Stewartson.

Within this context, both Batchelor and Stewartson assumed that: in the core,

6 < x < 1 -6,

(4.2) q(&,C) - G(x,E) + G-, a constant

They considered two types of solutions

Batchelor: In addition to (4.2) we have

(4.3) G. * 0, hl( ,e) + 0

i.e., the core rotates as a rigid body.

Stewar tson:

(4.4) G - 0.

Both agreed that the Batchelor type solution would appear when

0 4 G(OC), 0 4 G(1,C)

i.e., the co-rotating case. Stewartson suggested that (4.4) would occur when

G(0,C)G(1,C) < 0

Solutions of this type have been obtained both numerically and via matched asymptotic

expansions.

In fact, if the basic scaling holds, then - in some sense (4.2) must hold. This fact

is contained in the following results of Kreiss and Parter (14).

-10-



Theorem 4.1 (see Lemma 3.3. Theorem 3.1 and Theorem 4.1 of (14]). Let 6, 0 < 6 <1/4 be

given. Let (H(X,Cn),G(x,Cn)) he a sequence of solutions of (1.1), (1.2), (1.8a), (1.8b),

(1.8c) which satisfy (4.1) for some constant B. Then there is an E(6) and an M(6)

such that; if 0 < E n E(6) then for 0 < 6 4 x • I - 6 < 1 we haven

(4.5) 1/2Gb2o(X,n) -on:( )I ,(6)(i + B)c 128  0 as C + 0+n) nl n n

Obviously one can extract a subsequence C' + 0+ so that
n

(4.6b) G(x,g ) +* 2f -L.G.

Suppose this has been done. If

(4.7) > 0,

then there is a constant a such that

(4.8a) H(x,c)//7 + a, 6 < x < 1 -6
n n

In fact, both

(4.b) 1/G 2(x,n - uI, I- H(x,C) - al
n

n

are exponentially small (in E).

Remark: Two important points must be made. First; this is an asymptotic theorem, there is

no assertion of existence of solutions. There is only the statement that if such solutions

exist, this result describes their asymptotic behavior. Secondly, the statement that in

the boundaty-layer the solution is essentially the solution of a von Kxrmin is suggested

but this discussion is not entirely complete.

The case when G= 0 is more complicated. A partial discussion is given in

Section 6.

-11-



5. Order One Solutions

While the basic scaling (1.9) has many attractions there is another plausible

scaling. We assume

(501 lN(x'6)I + )1'(x'6)I + JG(x.r)J C B

If this bound holds then the physical velocities (qr,q,qx) are bounded in any cylinder

r 4 R. However, in order to guarantee that we are not dealing with the case described

earlier, we insist that H(x,C) be truly of order 1. Specifically, we assume there is a

point x0, 0 < x0 < 1 and a constant 6 > 0 so that

(5.2) IH(x 0 ,r)I 0 6 > 0

In his work on this problem with matched asymptotic expansions (33] Rasmussen had

trouble in the case where H and G are of the same order. It has been suggested that

this problem is involved with the intrinsic difficulties of Ackerberg-O'Malley Resonance

[1].

In fact, the matter is quite simple: (essentially) there are no such solutionsl!

The argument is in two parts. If (5.1) holds then there is a subsequence 6' 0+
n

and d function A(W) so that

(5.3) H(x,E) + R(x) uniformly on (0,I)

Further, it can be arranged that (5.2) takes the form

(5.2') H(x0 ,) 6 > 0

Let 8 > x0 be the first point greater than x 0 at which H(8) - 0. Then

(5.3) 0'(8) = 0

This result is explicitly given as Theorem 4.2 of [151.

It now follows that R(x) ) 0 and is of the following form: There are N numbers

a, 0 a 0 < 01 < -.. < aN < a N+1 and, on the interval [j,0j+11 =0

either R(x) is a quadratic or R(x) is of the form

(5.4a) R(x) - Aj[1 - cosTj(x - an)]

where

(5.4b) T. 2N
j+1 -j

-12-



Finally, while this result is never explicitly statedi in [15], the argument given in (16]

implies thatp ~ Therefore, (5.5) is a necessary condition for the existence of "order 1" solutions.

-13-M



6. Cells

In (26] Mellor, Chapple and Stokes introduced the concept of a cell and computed

several multi-cell solutions. A cell is the region between successive zeros x1 ,x2 of

H(x,e). This is a region [in (r,O,x) space] or cell in which a portion of the fluid is

"trapped", i.e. the fluid cannot cross the boundaries x = x , x - x 2. Unfortunately this

definition is not "tight" enough. It allows for the existence of cells in the boundary

layers which are lost as e + 0+.

For this reason we have adapted the following approach: Let there be a number P so

that; if

(6.1a) h(x,£) = EPH(x,E),

and in the interior of (0,1)

(6.1b) h(x,c"n ) + F(x), as En + 0

Definition: A "cell" is an interval (a,0) with 0 ( a < B ( 1 such that

(6.2a) either a = 0 on h(a) = 0, and

(6.2b) either B - 1 or h(B) = 0, and

(6.2c) t1(x)l > 0, a < x < 1

The solution obtained in [23] in the counter rotating case has P - - - and leads to

two oscillating cells. The basic result is

Theorem: (see Section 5 of [15]). Suppose there are at least two cells,

(a001 ), (2a , ) with

(6.3a) a2 a

and, these cells "oscillate", that is

(6.3b) f(x) >0, a 1 < x < B

(6.3c) (x) < 0, a2  
<  x < 1B2

Then R(x) has most 4 cells. Moreover, f(x) is a piecewise quadratic function with at

most two distinct pieces. That is, there is a point x0 e [0,1] - Note: x0 can be 0

or I - and R(x) has the following form

-14-



(6.4a) S(x) e C', 0 r x 4 1

(6.4b) (X) - a x 2 + a2 x + a 3 , 0 q x 4 x0

(6.4c) H(x) = bix + b2x + b3 , x0 ( x 4 1

The function g(x) is exponentially small in any strict interior subinterval of the

two intervals (O,xo), (x0,1).

In the case of the basic scaling, then P = -1/2. Thus we see that: in the case of

the basic scaling, if £ 
1/2H(x,C) is convergent, then it is a piecewise quadratic with at

most two pieces.

Of course, Mellor, Chapple and Stokes used the basic scaling and P 1/2 in their

case.

In order to complete the discussion of the basic scaling we would need to know that

C- 1/2 H(x,C)

must be convergent when G = 0.

-is-



7. Large Amplitude Solutions

In [40] Watts introduced the notion of a large amplitude solution (H(x,e),G(x,c)). He

obtained a formal asymptotic expansion for a solution with one "hump", i.e., the function

H(x,C) had the form

H(x,C) - A(e)[l - cos2?rx], 6 < x < 1 - 6

where

The function G(x,e) had the form

G(x,E) " i(2w)H(x,E)

Watts also states that he sees no reason why an n-hump solution cannot be constructed by

the same method. It seems he also obtained the relation (7.6a) (see Figure 4 - taken from

Watts [40)). He makes no mention of the quantity I.

The main result of the most recent paper of Kreiss and Parter (16] is Theorem 7.1 (see

Theorem II of [16]). Let n ) 1 be a given integer. Let s be a fixed real number.

Then, there is an Z - Z(n,s) such that; for 0 < C 4 Z there exists a solution

(H(x,E),G(x,e)) of (1.1), (1.2), (1.8a), (1.8b), (1.8c) with

(7.1) no= s, 1 .

This solution may be described as follows. There are exactly (n + 1) numbers

(7.2a) 0 0 (C) < a I() < ... < an-1 () < on(C) - 1

at which H(x,e) has its relative minima, i.e.,

(7.2b) H'(o (),C) = 0, H"(O.(e),e) > 0
J

Between the a.(e) the function H(x,C) is essentially positive. That is, for
23

6 > 0, 26 < a - 0 we have -for small C -

(7.3) H(x,C) > 0, oj (C) + 6 < x < J+1 (C) - 6

The numbers a (C) satisfy

(7.4) Lim (€) - ( - -

e-0 aj+1

where T is a fixed number which will be described in the Appendix. The number 0 is

determined from this relationship and (7.2a). We have
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6



n-
1 0 j+1 - (,(n 1

j=O
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(7.5) &= 2" --
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The function G(x,e) has at least n nodal zeros; 0 < Y (C) < y (E) <.. < Y (E) < 1.2 n

Moreover

(7.6a) y.(r) < o.(E), 0.(c) - y.(c) W o(C)3 J

If s * 0 and

sign s

Then G(x,e) has (n + 1) zeros. The additional zero, y (C) satisfies
0

(7.6b) 0 < y() = O(E)

Finally

(7.7a) IHI - C-2 IGI - 2

and, on the interval a . + 6 < x C c+ - 6 we have

(7.7b) C 2G(x,E) E 
2 (-l) l+IH(x,e)

(7.7c) c 2
Hlx,c) " A [I - cost (x - a i

Before going on to a sketch of the proof, it is worthwhile to see what are some of the

consequences of this theorem. When discussing "branches" of solution of homogeneous second

order equations it is useful to characterize solutions by the number of interior zeros.

Since G(x,C) satisfies such a homogeneous second order equation, let us characterize the

solution pair ( H(x,E),G(x,E)) by the zeros of G(x,c).

Case 1: s > 0. For every even 2 there are at least two solutions (H,G), (H,G)

with G(x,E),G(x,E) having exactly n interior zeros and

H(X,E) > 0, H(x,c) > 0, (essentially)

Proof: Let n = n" Since

sign s (-1)" > 0

sign s (-1 )n+1

the function G(x,C) of the solution pair ( H,G) described in Theorem 7.1 has exactly

n interior zeros. However, the function G(x,c) of the solution pair (H,G) associated

with n - - I also has exactly n - (n - 1) + I interior zeros.

Case 2: s < 0. For every odd ) 3 there are at least two solutions (H,G), (H,G) with

G(N,C), G(x,r) having exactly n interior zeros and

H(x,E) > 0, H(x,c) > 0, (essentially)

-18-



If I = there is at least one solution (H,G) with G(x,E) having exactly one interior

zero while H(x,c) is essentially positive.

Proof: Let n = n. Then

-1 = sign s $ (-1) n +l - 1

Then, for the solution (H,G ) described in Theorem 7.1 G(x,C) has exactly n =

interior zeros. If n 3 then let n = - 1. Since

-1 = sign s = (1 )n+1 =

the function G(x,E) of the solution H,G associated with n - has exactly

n + I = n interior zeros.

Case 3: s = 0. For every R > i (even or odd) there is at least one solution

(H(x,9),G(x,W)) with G(x,e) having exactly A interior zeros while H(x,e) is

essentially positive.

Proof: Let n = n and let ( H,G) be the solution described in Theorem 7.1.

This theorem is proven by first obtaining an O(1) solution with boundary values

G(O,Z), G(I,Z) which are O(C 2/ 3 ). These "pathological" solutions are obtained from a

"shooting" argument.

The arguments and results of [151 are used to show that when H(x,C) 0 ke2 /3  then

(H(x,C),G(x,E)) must have the form

h
(7.8a) H(x,E) - - (1 - cosr(x - a))

T2

(7.8b) G(x,E) - TH(X,E)

On the other hand, when

(7.9) H(x,E) O(C 2 /
3)

one employs the change of variables

x - x0
(7.10a) - /

3
0

(7.10b) h(&,E) = c-2/3H(XC), g(CC) - 2/3G(x,C)
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The functions (hg) satisfy the equations
no's ~1 €2/3g2_1 2 2/

(7.1 1a) +,l 4 hh" - h /

(7/. 11b) g" + hg' - h'g -0.

The initial values are chosen so that

(7.12) Ili , ( I1 k .

Now it is not difficult to see that h(t,C) converges to a quadratic function h() of

the form

(7.13a) h() - jh 2 (C - h2  a constant

Thus, g(&,c) converges to a function g(t) which satisfies

(7.13b) + 0' - ' 0

The final result depends on an elementary degree theory argument and an analysis of

the solutions of

(7.14) + , 2 - .

The facts about this equation are described in the Appendix.
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8. Comments and Questions

Despite all we now know about the solutions of (1.1), (1.2), (1.8a), (1.8b), (1.8c),

there are many interesting questions still unanswered.

Question 1: It is not difficult to see that the solutions obtained by Hastings [91 and

Elcrat (6) for large E >> 1 can be obtained by an iterative procedure with C as a

parameter. Thus, for C large we have a curve of solutions.

The first question is: keeping 0,.0 fixed and varying C downward, how far can

these continua of solutions be continued??

It is reasonable to assume that these solutions exist for all C > 0. The next

question is; if that is so, do these solutions (H,G) satisfy the basic scaling (1.9),

i.e.

(8.1) H = O(/E), G = 0(1) ??

Question 2: With Q0#9 fixed, are there families of solutions which satisfy (8.1)??

Recall that when Q0 = -0 the solutions obtained by McLeod-Parter [23) do indeed satisfy

(8.1). And of course, the trivial solution (3.2) satisfies (8.1). The computational

evidence suggests that there are such solutions.

Question 3: If there are solutions satisfying (8.1), are they unique?? The computational

evidence suggests that there are many solutions. If there are many solutions - how does

one characterize the possible values G. of (4.2). The results of Rasmussen (331 and the

conjecture of Stewartson [38] suggests that whenever

we must have

Question 4: Do the large amplitude solutions lie on continua of solutions? In particular,

given s and n # 2, is there a continuum of solutions which exist for C < E(n,s) which

contains the pair (H,G), (H,G) of solutions with G(x,C) and G(x,£) having exactly

interior zeros described in Section 7??

Question 5: Are there "other" solutions?? That is; are there families of solutions which

do not satisfy (8.1) other than those large amplitude qolutions (H C 2,G C 2) found

-21-
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in [16]?? Of course, for each solution -H( - x,C),G(1 - x,C) is again a solution.

Hence there are related large amplitude solutions with H(x,E) < 0 (essentially).

Question 6: The function (first discussed by McLeod [221)

(x,) - 1(G') 2 
+ (H')

2]

plays an important role in much of the analysis - see (221, (231, (14]. It is

characterized by the fact that there is a unique point y = y(C) 6 [0,1] at which *Cx,r)

has a minimum. Furthermore, if *(x,e) has a relative minimum, it is the minimum. Watts

[40] observes that - asymptotically - for the "solutions" which he obtain which also

satisfy (8.1),

(8.2) 0 < Lim Y(a) < I

while in the case of his large amplitude solutions

(8.3) Lim Y(M) - 0 or 1

It is not difficult to show that the large amplitude solutions constructed in (16] do

indeed satisfy (8.3). The question is: does Lim Y(C) characterize the "size" of all

solutions?

Question 7: The negative results of McLeod and Parter in Section 3 and the monotonicity of

G(x,C) for the counter-rotating case leads to the following observation and question.

For n0 -fI = -1 and all C > 0 there is a solution (H,G) with

G'(x,e) > 0

For, 0 4 0 0< 0 that statement cannot be true. Therefore, the question is: if there is

a number a, -1 < i < 0 determined such that; if a, = 1, and

(8.2) -1 < O <!0

then, for all C > 0 there is a solution (H,G) with G'(x,E) > 0. If there is no such

number, then 0 . -1 is a very special case indeed.

The final question is a very large one. Given a solution how can one determine its

time-dependent stability?
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Appendix

A key part of the argument leading to results of Section 7 - i.e. the results of [16]

- is the analysis of the solutions of

(AI)g" + 6x 2 g - 26xg -f 0

we sketch this analysis.

We can restrict ourselves to the case 6 = 1. Let g(x;1) be a solution of (A.1)

with 6 = 1. Then, for any 6 > 0, a direct calculation shows that

(A. 2) ¥(x;6) = g(61/X;1)

is a solution of (A.1) with this value of 6.

For the remainder of this discussion we have 6 - 1.

Using the W.K,8.J. method (see Chapter 6 of [29] and the method described by Wasow in

[41, pp. 52-61] we see that there are two linearly independent solutions g1(x), g2 (x) and

(A.3a) g1 (x) - X
2

(1 + 2/3x
2
), x + - ,

(A. 3b) gl(x) - 2x(i + 2/3x
2), x + - ,

(A.3c) g* - 2, x +- ,

(A. 3d)92(x) e xexp[- 2Y, , -

Similarly, there are two linearly independent solutions f1 (x), 2 (x) and

3

(,.,,a, ,,, (x)- x-exp[- -1, x + ,

(A.4b) 2(x) - x
2
, x + +

Since the function gj(x) can be written as a linear combination of Pj(x) and 02(x) we

see that there is a unique constant such that

(A.5) g1(x)/x
2 + 

I, x + +-

Of course, this t is the quantity of Section 7.

We don't need to know much about the functions 0 1 (x), 2 (x). It suffices that

(A.6) 0(0) * 0

This elementary result follows almost immediately from the maximum principle or the

representations
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, x3 3

.
3  3

(A. 7b) [P.P -1-2 x[-dx 3e

and the fact

(A.8) 0(o) - o

Our major interest ceuiters on the function gS(x). The basic facts are:

(A.9a) g'(x) < 0, -a < x < .

There is a value, say g, at which g1 (j) = 0. This unique zero can be estimated by

(A.9b) -1 < g< 0.

Finally

(A.9c) < 0

These results are obtained by a detailed argument based on elementary considerations,

the maximum principle, the oscillation theorem and the series expansion of the two

functions Y1 (x), Y2 (x) which satisfy (A.1) - with 6 = 1 - and also satisfy

(A.10a) Y1 (0) = 0, Y;(0) - -1

(A.10b) Y2 (0) = -1, Y2 (O) - 0

We remark that it is equally easy to obtain these results by rigorous, careful,

numerical computation. In fact, computations by Jerry Browning of NCAR indicate

t=-2
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